The parietal reach region selectively anti-synchronizes with dorsal premotor cortex during planning.
نویسندگان
چکیده
Recent reports have indicated that oscillations shared across distant cortical regions can enhance their connectivity, but do coherent oscillations ever diminish connectivity? We investigated oscillatory activity in two distinct reach-related regions in the awake behaving monkey (Macaca mulatta): the parietal reach region (PRR) and the dorsal premotor cortex (PMd). PRR and PMd were found to oscillate at similar frequencies (beta, 15-30 Hz) during periods of fixation and movement planning. At first glance, the stronger oscillator of the two, PRR, would seem to drive the weaker, PMd. However, a more fine-grained measure, the partial spike-field coherence, revealed a different relationship. Relative to global beta-band activity in the brain, action potentials in PRR anti-synchronize with PMd oscillations. These data suggest that, rather than driving PMd during planning, PRR neurons fire in such a way that they are less likely to communicate information to PMd.
منابع مشابه
Human posterior parietal cortex encodes the movement goal in a pro-/anti-reach task.
Previous research on reach planning in humans has implicated a frontoparietal network, including the precuneus (PCu), a putative human homolog of the monkey parietal reach region (PRR), and the dorsal premotor cortex (PMd). Using a pro-/anti-reach task, electrophysiological studies in monkeys have demonstrated that the movement goal rather than the location of the visual cue is encoded in PRR a...
متن کاملImplementation of spatial transformation rules for goal-directed reaching via gain modulation in monkey parietal and premotor cortex.
Planning goal-directed movements requires the combination of visuospatial with abstract contextual information. Our sensory environment constrains possible movements to a certain extent. However, contextual information guides proper choice of action in a given situation and allows flexible mapping of sensory instruction cues onto different motor actions. We used anti-reach tasks to test the hyp...
متن کاملIntegration of target and effector information in the human brain during reach planning.
To plan a reaching movement, the brain must integrate information about the location of the target with information about the limb selected for the reach. Here, we applied rapid event-related 3-T fMRI to investigate this process in human subjects (n = 16) preparing a reach following two successive visual instruction cues. One cue instructed which arm to use; the other cue instructed the locatio...
متن کاملDecoding Movement Goals from the Fronto-Parietal Reach Network
During reach planning, fronto-parietal brain areas need to transform sensory information into a motor code. It is debated whether these areas maintain a sensory representation of the visual cue or a motor representation of the upcoming movement goal. Here, we present results from a delayed pro-/anti-reach task which allowed for dissociating the position of the visual cue from the reach goal. In...
متن کاملDorsal premotor cortex and conditional movement selection: A PET functional mapping study.
Positron emission tomography (PET) brain mapping was used to investigate whether or not human dorsal premotor cortex is involved in selecting motor acts based on arbitrary visual stimuli. Normal subjects performed four movement selection tasks. A manipulandum with three graspable stations was used. An imperative visual cue (LEDs illuminated in random order) indicated which station to grasp next...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 36 شماره
صفحات -
تاریخ انتشار 2014